大数据时代你一定要知道的九件事 大数据已经成为时尚词汇,理解混乱是必然的。对此的九个思考,没有逻辑、没有体系性,纯粹是片段式的,目的是提出问题,思考中。心中无“大师”,一切从现象入手,窃以为“大师”一词仅仅适合于鬼神灵,不适合人。 此思考希冀引起思想碰撞,各种观点,无论是鼓励、批评,甚至攻击,只要发自内心,都能够促进思索。感谢!结合大家的批评与建议,对一些集中问题点进行一些思考后的再补充。 大数据思考之一 任何一个网站的数据都是人们互联网行为数据的很小的一个子集,无论这个子集多么全面,分析多么深入,都是子集,不是全集。对于企业来讲,竞争对手的数据价值远远超过自己网站数据的价值,从量级上,对于所有公司都一样,自己拥有的数据远远小于全集数据。看起来的全数据恰恰是残缺数据。 一些朋友对“竞争对手的数据价值远远超过自己网站数据的价值”的判断是错误的,我虚心接受,知己知彼很重要,实际的意义是“企业的生存关键不在于自己如何,而在于竞争对手如何,自己的事情必须做好”。在此前提下,竞争对手的数据价值远远超过自己网站数据的价值”。 大数据思考之二 数据量的大幅增加会造成结果的不准确,来源不同的信息混杂会加大数据的混乱程度。研究发现:巨量数据集和细颗粒度的测量会导致出现“错误发现”的风险增加。那种认为“假设、检验、验证的科学方法已经过时”的论调,正是大数据时代的混乱与迷茫,人们索性拥抱凯文凯利所称的混乱。 舍恩伯格在《大数据时代》一书中的提出的被广泛接纳的:大数据“没有精确只有混杂,没有因果只有相关”观点是错误的。混杂需要梳理成合理才有分析价值,无论是牛顿、爱因斯坦,还是韦伯的理想类型都是在混杂中找寻分析方法,相关很多时候是没有找到因果之前的认识,因果与过程理解是研究的核心。 大数据思考之三 互联网用户的基本特征、消费行为、上网行为、渠道偏好、行为喜好、生活轨迹与位置等,反映用户的基本行为规律。体系完整是所有分析性工作的第一步,完整的框架甚至胜过高深的模型。人类的认识最大的危险是不顾后果的运用局部知识。如果只关心自己网站数据,其分析基础必然是断裂数据。 断裂数据的危害会在竞争激烈时日益凸显,很多互联网企业以CRM管理系统当成数据挖掘与数据分析系统,观念是错误的,CRM的目的是规范性报表,数据分析与数据挖掘的目的是探索性归纳。 大数据思考之四 现在谈到大数据,基本有四个混乱观念:第一,大数据是全数据,忽视甚至蔑视抽样;第二,连续数据就是大数据;第三,数据量级大是大数据;第四,数据量大好于量小。对应的是:抽样数据只要抽样合理,结论准确;连续只是一个数据结构;大量级的噪音会得出错误结论;大小与价值关系不大。
现实互联网领域被基本关于大数据的书籍所累,观念十分混乱,实际上,人类积累的数据经验是一切分析的基础,包括所谓的海量数据,那几本书的方法论横空出世,同时又没有落地、没有实际操作经验积累,误导性太强。